Intrusion of Counterions into the Spine of Hydration in the Minor Groove of B-DNA: Fractional Occupancy of Electronegative Pockets
نویسندگان
چکیده
A sequence of ordered solvent peaks in the electron density map of the minor groove region of ApT-rich tracts of the double helix is a characteristic of B-form DNA well established from crystallography. This feature, termed the “spine of hydration”, has been discussed as a stabilizing feature of B-DNA, the structure of which is known to be sensitive to environmental effects. Nanosecond-range molecular dynamics simulations on the DNA duplex of sequence d(CGCGAATTCGCG) have been carried out, including explicit consideration of ∼4000 water molecules and 22 Na+ counterions, and based on the new AMBER 4.1 force field with the particle mesh Ewald summation used in the treatment of long-range interactions. The calculations support a dynamical model of B-DNA closer to the B form than any previously reported. Analysis of the dynamical structure of the solvent revealed that, in over half of the trajectory, a Na+ ion is found in the minor groove localized at the ApT step. This position, termed herein the “ApT pocket”, was noted previously (Lavery, R.; Pullman, B. J. Biomol. Struct. Dyn. 1985, 5, 1021) to be of uniquely low negative electrostatic potential relative to other positions of the groove, a result supported by the location of a Na+ ion in the crystal structure of the dApU miniduplex [Seeman, N.; et al. J. Mol. Biol. 1976, 104, 109) and by additional calculations described herein based on continuum electrostatics. The Na+ ion in the ApT pocket interacts favorably with the thymine O2 atom on opposite strands of the duplex and is well articulated with the water molecules which constitute the remainder of the minor groove spine. This result indicates that counterions may intrude on the minor groove spine of hydration on B-form DNA and subsequently influence the environmental structure and thermodynamics in a sequence-dependent manner. The observed narrowing of the minor groove in the AATT region of the d(CGCGAATTCGCG) structure may be due to direct binding effects and also to indirect modulation of the electrostatic repulsions that occur when a counterion resides in the minor groove “AT pocket”. The idea of localized complexation of otherwise mobile counterions in electronegative pockets in the grooves of DNA helices introduces a heretofore mostly unappreciated source of sequence-dependent effects on local conformational, helicoidal, and morphological structure and may have important implications in understanding the functional energetics and specificity of the interactions of DNA and RNA with regulatory proteins, pharmaceutical agents, and other ligands.
منابع مشابه
DNA and its counterions: a molecular dynamics study.
The behaviour of mobile counterions, Na+ and K+, was analysed around a B-DNA double helix with the sequence CCATGCGCTGAC in aqueous solution during two 50 ns long molecular dynamics trajectories. The movement of both monovalent ions remains diffusive in the presence of DNA. Ions sample the complete space available during the simulation time, although individual ions sample only about one-third ...
متن کاملTheoretical considerations on the "spine of hydration" in the minor groove of d(CGCGAATTCGCG).d(GCGCTTAAGCGC): Monte Carlo computer simulation.
A theoretical description of aqueous hydration in the minor groove of a B-form DNA is presented on the basis of a liquid-state Monte Carlo computer simulation on a system consisting of the oligonucleotide duplex d(CGCGAATTCGCG).d(GCGCTTAAGCGC) in a canonical B-form together with 1777 water molecules contained in a hexagonal prism cell and treated under periodic boundary conditions. The results ...
متن کاملSequence recognition of DNA by protein-induced conformational transitions.
The binding of proteins to specific sequences of DNA is an important feature of virtually all DNA transactions. Proteins recognize specific DNA sequences using both direct readout (sensing types and positions of DNA functional groups) and indirect readout (sensing DNA conformation and deformability). Previously we showed that the P22 c2 repressor N-terminal domain (P22R NTD) forces the central ...
متن کاملSimilarities and differences in interaction of K+ and Na+ with condensed ordered DNA. A molecular dynamics computer simulation study
Four 20 ns molecular dynamics simulations have been performed with two counterions, K+ or Na+, at two water contents, 15 or 20 H2O per nucleotide. A hexagonal simulation cell comprised of three identical DNA decamers [d(5'-ATGCAGTCAG) x d(5'-TGACTGCATC)] with periodic boundary condition along the DNA helix was used. The simulation setup mimics the DNA state in oriented DNA fibers or in crystals...
متن کاملRegularities in formation of the spine of hydration in the DNA minor groove and its influence on the DNA structure.
Computer calculations as well as an analysis of space-filling models and literature data allowed the following conclusions to be made: an ordered spine of water in the DNA minor groove, similar to that revealed in the CGCGAATTCGCG crystal, seems to exist in DNA crystals, fibers and solutions; it is shown that this spine may be formed on A/T runs containing no TA step while on the TA step the sp...
متن کامل